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Role of residues 143 and 278 of the human nuclear Vitamin D receptor in
the full-length and�165-215 deletion mutant�
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Abstract

Most of the actions of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] are mediated by binding to the Vitamin D nuclear receptor (VDR).
The crystal structure of a deletion mutant (�165-215) of the VDR ligand-binding domain (LBD) bound to 1,25(OH)2D3 indicates that
amino acid residues tyrosine-143 and serine-278 form hydrogen bonding interactions with the 3-hydroxyl group of 1,25(OH)2D3. Studies
of VDR and three mutants (Y143F, S278A, and Y143F/S278A) did not indicate any differences in the binding affinity between the variant
receptors and the wild-type receptor. This might indicate that the 3-hydroxyl group binds differently to the full-length VDR than the to
deletion mutant. To further investigate, four deletion VDR mutants were constructed: VDR�165-215, VDR�165-215 (Y143F), VDR�165-215

(S278A), VDR�165-215 (Y143F/S278A). There were no significant differences in binding affinity between the wild-type receptor and the
deletion mutants except for VDR�165-215 (Y143F/S278A). In gene activation assays, VDR constructs with the single mutation Y143F and
the double mutation Y143F/S278A, but not the single mutation S278A required higher doses of 1,25(OH)2D3 for half-maximal response.
This suggests that there are some minor structural and functional differences between the wild-type VDR and the�165-215 deletion
mutant and that Y143 residue is more important for receptor function than residue S278.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The hormone, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3],
mediates a wide variety of biological effects. These include
regulation of calcium homeostasis by actions on intestine,
kidney and bone, and also other effects on many systems
including inducing differentiation and inhibiting prolifer-
ation of several types of cells. Many of these effects are
mediated through interactions of 1,25(OH)2D3 with its
nuclear receptor (VDR)[1,2]. The cDNA for the VDR
was cloned and sequenced in 1988[3]. It is a member
of a superfamily of structurally and functionally related
ligand dependent nuclear receptors that include receptors
for glucocorticoids, progesterone, estrogen, aldosterone,
androgens, hormonal forms of Vitamins A and D, thy-
roid hormone, peroxisome-proliferator activators and many
orphan receptors. Crystal structures of 16 nuclear recep-
tor ligand-binding domains (LBDs) have been determined
including retinoid X receptor (RXR)[4,5], retinoic acid
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receptors (RAR)[6,7], estrogen receptors (ER)[8–10], per-
oxisome proliferator-activated receptors (PPAR)[11,12],
progesterone receptor (PR)[13], and androgen receptor
(AR) [14,15]. These structures have been very important
in providing information on the structural basis of receptor
action.

A double deletion variant of the VDR has also been re-
cently crystallized and a high-quality structure of the LBD
was obtained[16]. The LBD consists of twelve�-helices
and one� sheet that are folded in three layers to form a
hydrophobic binding pocket for the hormone. When ligand
binds, conformational changes are induced in the recep-
tor that increase its ability to modulate gene transcription
[17]. The most dramatic conformational change involves
repostitioning of helix 12 creating new surfaces required
for interaction with RXR and additional nuclear factors
called coactivators[18]. The three hydroxyl groups of
1,25(OH)2D3 form hydrogen bonds with polar amino acid
residues in the hydrophobic binding pocket. Mutational
analysis of the residues that contact the 1-hydroxyl (1-OH)
group (S237, R274) and the 25-hydroxyl group (H305,
H397) indicate reduced binding affinity compared to the
wild-type receptor but mutational analysis of the residues
that contact the 3-hydroxyl (3-OH) group (Y143, S278)
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did not result in reduced binding affinity. The region of the
ligand-binding domain that contacts the 3-hydroxyl group
is close to the region deleted in the crystal structure, sug-
gesting that the conformation of that region of the receptor
might be different in the full-length receptor. A series of
mutations in the�165-215 deletion mutant of VDR were
constructed to further address this issue.

2. Materials and methods

2.1. Site-directed mutagenesis

The cDNA for the hVDR was cloned into theEcoRI
andNsiI sites in pcDNA1.1 (Invitrogen, CA)[19]. The two
single point mutations and double point mutations were in-
corporated into the cDNA using QuikChange site-directed
mutagenesis kit (Stratagene, CA) and the following primers:
Y143F forward (5′-CCATAAGACCTTCGACCCCACCTA-
C-3′), Y143F reverse (5′-GTAGGTGGGGTCGAAGGTCT-
TATGG-3′), S278A forward (5′-CGCTCCAATGAGGCCT-
TCACCATGG-3′), and S278 reverse (5′-CCATGGTGAAG-
GCCTCATTGGAGCG-3′).

2.2. Creation of deletion mutants

The �165-215 deletion was engineered by inverse
PCR using phosphorothioate-containing primers: primer 1
(5′-GGAGGGTCTGTGACCCTAGAGCTG-3′) and primer
2 (5′-CACAGACCCTCCACCATCATTCAC-3′), bold
residues contain phosphorothioate. The resulting PCR frag-
ment was digested with T7 gene 6 exonuclease for 1 h at
37◦C to create 12 base, single-stranded 3′-complementary
ends. The 3′ ends self-hybridize creating nicked circular
DNA that was used to transform XL1-blue supercompetent
cells (Stratagene, CA). Clones were selected and sequenced
using fmole sequencing kit (Promega, WI).

2.3. Cell culture and transient transfection of COS-7 cells

COS-7 monkey kidney cells were maintained in continu-
ous culture in Dulbecco’s modification of Eagle’s medium
(DMEM) (Mediatech Inc., VA) with 10% fetal bovine serum
(FBS) (BioWhittaker, MD) at 37◦C in a humidified atmo-
sphere with 5% CO2. For transfection, cells were seeded
at 3 × 105 cells per 150 mm tissue culture dish (Corn-
ing Inc., NY). After 24 h incubation, phosphate buffered
saline (PBS)-washed cells were treated with 1 mg/ml di-
ethylaminoethyl (DEAE)–dextran (Sigma, MO) in PBS for
9 min. The DEAE–dextran was removed by aspiration and
cells were washed twice with PBS then incubated for 30 min
with 10.6�g DNA in PBS/dish. Cells were then incubated
in DMEM supplemented with 10% FBS and 80�M chloro-
quine (Sigma, MO) for 4 h followed by incubation in the
same medium without chloroquine for 24 h. Cells were har-
vested 72 h post-transfection.

2.4. Saturation binding analysis

Aliquots of lysates from COS-7 cells transfected with
cDNA for VDR or mutant VDR were incubated with in-
creasing concentrantions of [3H]-1,25(OH)2D3 (specific ac-
tivity, 90–93 Ci/mmol, Amersham Pharmacia Biotech, IL)
in the presence or absence of a 200-fold excess of nonradio-
labeled 1,25(OH)2D3. Hormone bound to receptor was sep-
arated from free hormone using hydroxylapatite batch assay
as previously described[20]. Specific binding was calcu-
lated by subtracting non-specific biding from total binding.

2.5. Gene transactivation assays

COS-7 cells were seeded at 3× 105 cells per well in
24-well plates (Corning Inc., NY) and co-transfected as
described above with 0.5�g per well pcDNA1.1 VDR
plasmid and 1.5�g per well pSEAP–VDRE plasmid, con-
taining the osteocalcin gene Vitamin D response element
(VDRE) linked to secreted alkaline phosphatase reporter
gene (SEAP). Twenty-four hours post-transfection, the cell
medium was supplemented with 1,25(OH)2D3 in 0.1%
ethanol, final concentration. At 30 h after hormone treat-
ment, the cell medium was harvested and assayed for SEAP
activity using Phospha-Light kit (Tropix, MA).

3. Results

3.1. Effects of mutations on ligand binding

The crystal structure of the double deleted ligand-binding
domain of the VDR has been solved at high resolution.
The data from the crystal structure indicates that the 3-OH
group makes hydrogen bonding contacts with residues
Y143 and S278. Previous mutational analysis of the VDR
did not indicate these residues as important for ligand
binding [21]. Originally, we constructed these two single
mutants and the double mutation in the wild-type recep-
tor to assess the importance of these residues for binding.
Representative graphs of the saturation binding analysis are
shown inFig. 1. As seen inTable 1, changing the residues
individually or together had no effect on ligand binding.
From these results, it was not clear whether the 3-OH
group was anchored differently in the full-length receptor
compared to the deleted receptor of the crystal structure.
Therefore, we synthesized four�165-215 deletion mu-
tants: wild-type, single point substitutions at 143 and 278
as well as the double point mutant. The full-length VDR,
Y143F, and S278A displayed similar binding affinities to
their deleted counterparts, VDR�165-215, Y143F�165-215,
S278A�165-215, respectively. Only the double mutant
with the deletion, Y143F/S278A�165-215, had decreased
binding affinity for hormone that was significantly dif-
ferent from both the full-length VDR and VDR�165-215.
This suggests that residues 143 and 278 are not very
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Fig. 1. Saturation binding analysis: increasing concentrations of radiolabeled 1,25(OH)2D3 were added to aliquots of cell homogenates transfected with
wild-type or mutant VDR cDNA in the presence or absence of 200-fold excess non-radioactive 1,25(OH)2D3. Hormone bound to receptor was separated
from free hormone using hydroxylapatite. Specific binding was calculated by subtracting non-specific binding from total binding. The data for total
binding are the mean of triplicate points and for non-specific binding are the mean of duplicate points.

Table 1

Receptor construct Saturation binding
KD (nM)

Transactivation
EC50 (nM)

wt VDR 0.61 ± 0.33 (n = 7) 0.27± 0.24 (n = 4)
VDR�165-215 0.42 ± 0.08 (n = 4) 0.13± 0.11 (n = 4)
Y143F 0.46± 0.16 (n = 4) 3.08± 2.75 (n = 4)a

Y143F�165-215 0.64 ± 0.34 (n = 6) 0.88± 0.79 (n = 4)b

S278A 0.43± 0.17 (n = 4) 0.66± 0.68 (n = 3)
S278A�165-215 0.51 ± 0.20 (n = 6) 0.27± 0.04 (n = 3)
Y143F/S278A 0.56± 0.17 (n = 7) 126± 5.7 (n = 3)a

Y143F/
S278A�165-215

1.15 ± 0.70 (n = 5)b,c 30 ± 13 (n = 4)a,d

Data are expressed as means and S.D. ofn independent experiments.
One-way ANOVA with Newman–Keul’s post test was performed using
GraphPad Prism version 3.00 for Windows, GraphPad Software, CA.

a Significantly different than wt VDR,P < 0.001.
b Significantly different than VDR�165-215, P < 0.05.
c Significantly different than wt VDR,P < 0.05.
d Significantly different than VDR�165-215, P < 0.001.

important for binding affinity but may be more impor-
tant in the deletion VDR construct than the full-length
VDR.

3.2. Gene transactivation studies

The functionality of the various VDR constructs was
assessed by gene transactivation assays. Representative
data is shown inFig. 2. As seen inTable 1, full-length
wt VDR, Y143F, S278A, and Y143F/S278A displayed
similar transcription activation as their deleted coun-
terparts: VDR�165-215, Y143F�165-215, S278A�165-215,
Y143F/S278A�165-215, respectively. All mutants with the
Y143F mutation required higher doses of hormone to induce
gene transcription than both wt VDR and VDR�165-215.
This suggests that residue 143 is important for gene activa-
tion in both the deleted VDR construct and the full-length
VDR construct.
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Fig. 2. Gene transactivation assay: COS-7 cells were co-transfected with the osteocalcin VDRE fused to secreted alkaline phosphatase gene and a cDNA
for VDR (wild-type or mutant). using DEAE–dextran. After 24 h, cells were treated with increasing doses of 1,25(OH)2D3 or ethanol. Forty-eight hours
later, culture medium was collected and secreted alkaline phosphatase activity was determined by chemiluminescence. Each point is the average of
triplicate transfections.

4. Discussion

Understanding the structure–function relationships of the
VDR is important for understanding its actions and for de-
signing analogs with selective biological activity. The only
structural data on the VDR is from crystal structures of the
ligand-binding domain with a 50-residue deletion. While
binding studies and functional assays indicated that this
deletion had very little effect on the activity of the receptor
[22], there were questions about receptor interactions with
the 3-OH group. No earlier studies using VDR mutants iden-
tified residues 143 or 278 as important residues for binding
[21]. Initially we synthesized these mutants in the full-length
receptor and found no significant differences in binding
affinity between any of the constructs, so we synthesized the
same mutants in VDR but also with the�165-215 deletion.
The only construct with a significant decrease in binding

affinity compared to the other constructs was the double
point mutation with the deletion, Y143A/S278A�165-215.
There are several possible explanations. The 3-OH is not as
critical for high affinity binding as the other two hydroxyl
groups of the hormone. This was shown by steroid compe-
tition binding assays using analogs that were missing one
of the hydroxyl groups[1]. Therefore, residues that interact
with the 3-OH group may not contribute very much to the
overall binding affinity, so changing those residues may have
little or no affect on binding affinity. Another possibility is
that the deletion changed the region of the binding pocket
that interacts with the 3-OH group and different residues
interact with the 3-OH group in the full-length receptor. If
this were true, we might have expected to see more of a dif-
ference in binding affinity between the deletion constructs
than the full-length constructs. Since there was a slight
decrease in binding affinity for the Y143A/S278A�165-215
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construct, there may be slight conformational differences
between the full-length and VDR�165-215. Additionally,
the crystal structure indicates the presence of several wa-
ter molecules surrounding the A ring of the hormone in
the ligand-binding domain. These water molecules could
substitute for the missing hydroxyl groups in the mutant
receptors and make hydrogen bonding interactions with the
3-OH of the hormone. More detailed structural analysis
studies will have to be done to distinguish between these
possibilities.

The gene transactivation assays show that residue 143
and 278 are important for receptor function since single
point mutations of 143 required significantly higher doses
of 1,25(OH)2D3 to achieve maximal response and, in com-
bination with a mutation at 278, required even higher doses
of hormone.
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